Generating Multilingual Grammars
from OWL Ontologies

Guillermo Pérez, Gabriel Amores, Pilar Manchén, and David Gonzilez

Universidad de Sevilla
Seville, Spain
{gperez, jgabriel, pmanchon, dgmaline}Qus.es

Abstract. This paper describes a tool which automatically generates
productions for context-free grammars from OWL ontologies, using just
a rule-based configuration file. This tool has been implemented within
the framework of a dialogue system, and has achieved several goals:
it leverages the manual work of the linguist, and ensures coherence
and completeness between the Domain Knowledge (Knowledge Manager
Module) and the Linguistic Knowledge (Natural Language Understand-
ing Module) in the application.

1 Introduction

1.1 Automatic Grammar Generation

The problem of manually generating grammars for a Natural Language Under-
standing (NLU) system has been widely discussed. Two main approaches can be
highlighted from those proposed in the literature: Grammatical Inference and
Rule Based Grammar Generation.

The Grammatical Inference approach (http://eurise.univ-st-etienne.fr/gi/)
refers to the process of learning grammars and languages from data and is con-
sidered nowadays as an independent research area within Machine Learning tech-
niques. Examples of applications based on this approach are ABL [1] and EMILE
(2].

On the other hand, the Rule Based approach tries to generate the gram-
mar rules from scratch (i.e. based on the expertise of a linguist), while trying
to minimize the manual work. An example of this approach is the Grammatical
Framework [3], whose proposal is to organize the multilingual grammar construc-
tion in two building blocks: an abstract syntax which contains category and
function declarations, and a concrete syntax which defines linearization rules.
Category and function declarations are shared by all languages and thus ap-
pear only once, while linearization rules are defined on a per-language basis.
Methods which generate grammars from ontologies (including ours) may also be
considered examples of the Rule Based approach.

© A. Gelbukh (Editor)
Advances in Natural Language Processing
Research in Computing Science 18, 2006, pp. 3-14

4 Pérez G., Amores G., Manchon P. and Gonzdlez D.

1.2 Generating Grammars from Ontologies

In the context of Dialogue Management, the separation of the Knowledge Man-
ager (the module in charge of the domain knowledge) and the NLU module
poses a number of advantages: the complexity of the linguistic components is
reduced [4], the existing domain knowledge may be reused [4], reference resolu-
tion processes (i.e: anaphoric resolution, underspecification, presupposition, and
quantification) are better defined [5] , and, finally, it helps the dialogue manager
in keeping dialogue coherence [4].

However. the information contained in the Knowledge Manager module over-
laps with information inside the NLU module. The key idea of this paper is that
this redundancy can be used to automatically generate grammar rules from the
relationships between the concepts described in the ontology. Thus, the fact that
the concept “lamp” is linked to the concept “blue” through a “hasColor” rela-
tionship somehow implies that sentences like “the blue lamp” should be correct
in this domain and therefore accepted by the NLU grammar.

The generation of linguistic knowledge from ontologies has been proposed
previously. Russ et al. [6] proposed a method for generating context—free gram-
mar rules from JFACC ontologies. Their approach was based on including an-
notatious all along the ontology indicating how to generate each rule. They
implemented a program that was able to parse the ontology and produce the
grammar rules.

A second precedent of linguistic generation from ontologies can be found in
[7]. where the author claimed that the concepts of an OWL ontology could be
used to generate the lexicon of the NLU module.

In this paper a new rule-based solution for generating grammars from ontolo-
gies will be described. Section 2 motivates and gives an overview of the solution
hereby proposed. Section 3 describes how the configuration files have to be built.
Section 4 shows an introduction to the algorithm used. Section 5 includes real
showcases of the tool at work. Section 6 is a summary of the conclusions and
future work.

2 Solution overview

The solution proposed here is close to that of [6] in the sense that we also parse
the ontology for the rule generation. Nonetheless, it differs in two ways:

Firstly, our approach argues that the ontology should remain as-is, without
any specific linguistic annotation. Although it is obvious that the ontology it-
self is not descriptive enough to generate the grammar rules without additional
information, we consider it preferable to place this information in a separate
configuration file which describes how the grammar rules should be generated.
This approach is also more convenient for a dialogue system (where the linguis-
tic information in the ontology would be useless and cumbersome), and more
suitable from a reusability point of view.

Secondly, OWL has been chosen instead of JFACC for two reasons:

Generating Multilingual Grammars from OWL Ontologies b

1. The use of OWL is widely spread and seems to be the basis for the future
semantic web. This implies that large ontologies are likely to be available in
the future. Our approach will help create dialogue applications more easily
by simply downloading specific domain ontologies.

2. OWL is based on RDF, and therefore uses Subject-Property-Object triplets.
This static structure of OWL is of great help because the algorithm can focus
on handling properties, letting the linguist define how to create rules which
apply to all the elements in their Domain (or Range). It should be pointed
out that this choice is not just a change in the ontology format: the whole
parsing algorithm is based on RDFs predefined structure.

As previously mentioned, our approach focusses on grammar rules generation:
no automatic lexicon hierarchy generation has been considered. To ensure co-
herence between the lexicon and the grammar, the list of potential non-terminal
types is extracted from the list of all the entities within the ontology. The linguist
decides which entities from this list shall remain in the final dialogue application.

It should be pointed out that this approach is meant only as a way of helping
the linguist, and therefore it does not provide a ready-to-use grammar. By using
this tool, the grammar will be easier to generate and more consistent with the
domain knowledge, but, in any case, the resulting grammar must be checked and
completed manually in a second step.

The current implementation provides grammar rules in a self-defined format
(8] , which basically consists of a left~hand symbol followed by an arrow and
a list of right-hand symbols. This notation can be easily translated to most
standards, such as BNF.

3 Configuration files

As outlined above, the linguist must define a configuration file which will be used
in conjunction with the ontology in order to generate the grammar rules. In this
configuration file, the linguist has to identify the properties that may appear in
the grammar and the way in which their domain and range will be included in
the associated rules. In order to do it, an easy XML syntax has been defined
(see DTD below).

Basically, the linguist can define the generation rules by means of nested
forEach loops handling the properties (and subproperties) of the ontology, and
using variables to identify the elements from its domain and range.

<!DOCTYPE rulesList [
<!ELEMENT rulesList (forEach+)>
<!ELEMENT forEach (forEach|rule+)>
<!ELEMENT rule (left,right)>
<IELEMENT left (#PCDATA)>
<!ELEMENT right (#PCDATA) >

<!ATTLIST forEach property CDATA #IMPLIED>

6 Pérez G., Amores G., Manchon P. and Gonzalez D.

<VATTLIST forEach subPropertyOf CDATA #IMPLIED>
<VATTLIST forEach domain CDATA #IMPLIED>
<IATTLIST forEach range CDATA #IMPLIED>

<!ATTLIST rule lang (ES|EN|FR) #REQUIRED>
1>

In order to better understand this structure as well as the objective of the
tool, a selection of showcases including those relevant in the ontology, the config-
uration file, and the resulting grammar rules are shown in the following sections.

4 Overview of the algorithm

This section describes in some detail the functions in the algorithm, which con-
sists of three major steps:

1. Parse the OWL ontology. The goal of this step is to generate an internal
representation of the relevant ontological elements. This representation will
in turn be used to make queries over the ontology.

2. Parse the configuration file. The objective here is to generate the list of all
applicable rules.

3. Generate the output rules. In this step, the script goes through the previous
list of applicable rules, substituting the reference to classes and properties
by the corresponding Input Form from the ontology.

The first two steps described have been implemented through a finite state
machine (FSM) illustrated in figure 4.

<rulesList <IIEfgt
u i </le!
@
{ <forEach <forEach
PROPERTY :I/'i?ghhtt
Al </forEach </forEach </rule
2/
</ruleslList

Fig. 1. FSM for the configuration file parser

For each state in the FSM, only one set of attributes can be parsed. These
are mentioned in the previous DTD structure:

Base :
— No attributes are expected in this state.
Property :
— propertyRef: Indicates the word which refers to the property in the rule
description.

Generating Multilingual Grammars from OWL Ontologies 7

— subPropertyOf: Indicates a super property. All the sub properties of this
one will be handled by the algorithm.
Triplet :
— domainRef: Indicates the word which makes reference to the domain in
the rule description.
— rangeRef: Indicates the word which refers to the range in the rule de-
scription.
Rule :
— lang: Indicates for which language the rule is valid.

5 Showcases

5.1 Sample Rules

The example below illustrates a common case in which the grammar rules will
be generated. Our examples are taken from a smart-house domain in which
the ontology describes both the hierarchy of devices in the house as well as the
actions (or voice commands) which can be performed over those devices, such
as “switch on the lamp in the kitchen”. Thus, consider an ontology where a set
of properties are grouped as subproperties of a general “hasDeviceCommand”
property. These properties are shown graphically below:

Items Desgriptor Location Command
hasHNumber hasColor locatedin
{,‘gikﬁ‘;ﬂg” hasSize hasDevicaCommand hasFynction hasTelephoneCommand
hasLName
hasEMail
hasRelationShip
hasWNumber SwitchOn Undo Redial
SwitchOff Help Call
Close Find
Open CancelTransfer
List
Transfer
MakeConference

Fig. 2. Ontology Structure

In this showcase we are going to analyze the portion describing the device-
related commands, whose XML equivalent is as follows:

<!-- hasDeviceCommand Subproperties -->

<owl:0ObjectProperty rdf:ID="SwitchO0ff">
<rdfs:subProperty0f
rdf :resource="#hasDeviceCommand"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range>
<owl:Class>

8 Pére= G., Amores G., Manchon P. and Gonzdlez D

<owl:union0Of rdf:parseType="Collection">
<owl:Class rdf:about="#Fan"/>
<owl:Class rdf:about="#Heater"/>
<owl:Class rdf:about="#Lamp"/>
<owl:Class rdf:about="#Radio"/>
<owl:Class rdf:about="#TV"/>
</owl:union0Of>
</owl:Class>
</rdfs:range>
</owl:0bjectProperty>

<owl:0ObjectProperty rdf:ID="SwitchOn">
<rdfs:subProperty0f
rdf :resource="#hasDeviceCommand"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range>
<owl:Class>
<owl:unionOf
rdf :parseType="Collection">
<owl:Class rdf:about="#Fan"/>
<owl:Class rdf:about="#Heater"/>
<owl:Class rdf:about="#Lamp"/>
<owl:Class rdf:about="#Radio"/>
<owl:Class rdf:about="#TV"/>
</owl:unionOf>
</owl:Class>
</rdfs:range>
</owl:0ObjectProperty>

<owl:ObjectProperty rdf:ID="Close">
<rdfs:subPropertyOf
rdf :resource="#hasDeviceCommand"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Blind"/>
</owl:0ObjectProperty>

<owl:0ObjectProperty rdf:ID="Open">
<rdfs:subProperty0f
rdf :resource="#hasDeviceCommand" />
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf :resource="#Blind"/>
</owl:0bjectProperty>

In this particular case. the linguist has detected that all properties are ac-
tually actions, that is, they correspond to the “commands” to be performed by

Generating Multilingual Grammars from OWL Ontologies 9

the system over all the elements in the range, that is, all the devices within the
ontology. This can be easily expressed by the following configuration file:

<rulesList>
<forEach property="Z" subProperty0Of="hasDeviceCommand">
<forEach domain="X" range="Y">
<rule lang="ES">
<left>Command</left>
<right>Z Y</right>
</rule>
</forEach>
</forEach>
</rulesList>

Now, once the application is run indicating the appropriate configuration file,
the following results are obtained !

Command -> IForm_SwitchOff IForm_Fan
Command -> IForm_SwitchOff IForm_Heater
Command -> IForm_SwitchOff IForm_Lamp
Command -> IForm_SwitchOff IForm_DimmerLamp
Command -> IForm_SwitchOff IForm_Radio
Command -> IForm_SwitchOff IForm_TV
Command -> IForm_SwitchOn IForm_Fan
Command -> IForm_SwitchOn IForm_Heater
Command -> IForm_SwitchOn IForm_Lamp
Command -> IForm_SwitchOn IForm_DimmerLamp
Command -> IForm_SwitchOn IForm_Radio
Command -> IForm_SwitchOn IForm_TV
Command -> IForm_Close IForm_Blind
Command -> IForm_Open IForm_Blind

The grammar rules obtained are semantically driven, without purely linguis-
tic items like “Noun” or “Preposition”. This is typically the case of dialogue
systems grammars.

It should be noticed that even with this toy ontology, sixteen grammar rules
have been generated using just two nested forEach loops.

5.2 Capturing Multimodality

Now let us assume the same scenario (i.e. the same ontology) but including mul-
timodal entries; namely voice and pen inputs. Following Oviatt’s results [9], it
may be expected that mixed input modalities (voice: switch this on, pen: clicks

' The prefix “IForm” stands for “Input Form”, used to identify non-terminal symbols
in our self-defined format [8] . This prefix has no bearing on the algorithm: any other

token could be used.

10 Pére= G.. Amores G.. Manchon P. and Gonzdlez D.

on the lamp icon) may also include alternative constituent orders, that is, dif-
ferent from the voice only input. The NLU module may therefore receive inputs
such as: “lamp switch on” (verb at the end). 2

This new set of rules can be easily accounted for by adding just one rule to
the configuration file:

<rulesList>
<forEach property="P"
subProperty0f="hasDeviceCommand">
<forEach domain="X" range="Y">
<rule>
<left>Command</left>
<right>P Y</right>
</rule>
<rule>
<left>Command</left>
<right>Y P</right>
</rule>
</forEach>
</forEach>
</rulesList>

The new output will be the same as before but including these new rules:

Command -> IForm_Fan IForm_SwitchOff
Command -> IForm_Heater IForm_SwitchOff
Command -> IForm_Lamp IForm_SwitchOff
Command -> IForm_DimmerLamp IForm_SwitchOff
Command -> IForm_Radio IForm_SwitchOff
Command -> IForm_TV IForm_SwitchOff
Command -> IForm_Fan IForm_SwitchOn
Command -> IForm_Heater IForm_SwitchOn
Command -> IForm_Lamp IForm_SwitchOn
Command -> IForm_DimmerLamp IForm_SwitchOn
Command -> IForm_Radio IForm_SwitchOn
Command -> IForm_TV IForm_SwitchOn

Command -> IForm_Blind IForm_Close

Command -> IForm_Blind IForm_Open

5.3 Capturing Multilinguality

Due to the structural differences among human languages, different rules must
be generated for different languages.

? Note that linguistically speaking this order is also possible in English in topicalized
or left-dislocated constructions such as “The lamp, switch it on”.

Generating Multilingual Grammars from OWL Ontologies 11

For example, in order to indicate the location of a given device, “the kitchen
light” is said in English, whereas in Spanish the constituent order changes: “la
luz de la cocina” (literally, the light of the kitchen).

Once the target language has been chosen, specific language rules may be
generated.

Consider the following fragment taken from the ontology previously shown,
describing which elements can be affected by the property “locatedIn”:

<owl:0ObjectProperty rdf:ID="locatedIn">
<rdfs:domain>
<owl:Class>
<owl:unionOf
rdf :parseType="Collection">
<owl:Class rdf:about="#Lamp"/>
<owl:Class rdf:about="#Radio"/>
<owl:Class rdf:about="#Heater"/>
</owl:union0f>
</owl:Class>
</rdfs:domain>
<rdfs:range>
<owl:Class>
<owl:unionOf
rdf :parseType="Collection">
<owl:Class rdf:about="#Bedroom"/>
<owl:Class rdf:about="#Kitchen"/>
<owl:Class rdf:about="#Hall"/>
<owl:Class rdf:about="#LivingRoom"/>
</owl:unionOf>
</owl:Class>
</rdfs:range>
</owl:0bjectProperty>

The multilingual configuration file which captures the structural differences
mentioned above would be the following:

<rulesList>
<forEach property="P"
subProperty0f="Location">
<forEach domain="X" range="Y">
<rule lang="ES">
<left>X</left>
<right>X P Y</right>
</rule>
<rule lang="EN">
<left>X</left>
<right>Y X</right>

12 Pére= G., Amores G., Manchon P. and Gonzdlez D.

</rule>
</forEach>
</forEach>
</rulesList>

Now, if only English grammar rules are to be generated, the application must
be run with the option *-lang=EN", which obtains the following results:

IForm_Lamp -> IForm_Bedroom IForm_Lamp
IForm_Lamp -> IForm_Kitchen IForm_Lamp
IForm_Lamp -> IForm_Hall IForm_Lamp
IForm_Lamp -> IForm_LivingRoom IForm_Lamp
IForm_Radio -> IForm_Bedroom IForm_Radio
IForm_Radio -> IForm_Kitchen IForm_Radio
IForm_Radio -> IForm_Hall IForm_Radio
IForm_Radio -> IForm_LivingRoom IForm_Radio
IForm_Heater -> IForm_Bedroom IForm_Heater
IForm_Heater -> IForm_Kitchen IForm_Heater
IForm_Heater -> IForm_Hall IForm_Heater
IForm_Heater -> IForm_LivingRoom IForm_Heater

6 Conclusions and future work

In this paper a novel rule-based approach to automatic grammar generation has
been described. The solution proposed is based on OWL ontologies and pro-
vides linguists with an easy way to take advantage of the information contained
within ontologies. This information extraction process will also be easier for the
linguist if the ontology has been designed keeping in mind that grammars will
be generated from it.

The solution proposed has achieved the expected goals: the linguist can gen-
erate a good number of rules from a simple configuration file and, by having
the rules directly generated from the ontologies, domain knowledge and lin-
guistic knowledge coherence and completeness is ensured. In addition, a rapid
prototyping of new grammars for the speech recognizer and the NLU module is
obtained by the same mechanism.

Future research areas include the generation of unification-based grammar
rules and dialogue rules, and an evaluation of the usefulness of the tool with
larger OWL ontologies.

7 Acknowledgements

This work was done under the TALK research project, funded by EU FP6
[ref. 507802 and the “Multilingual Management of Spoken Dialogues” project.
funded by the Spanish Ministry of Education under grant TIC2002-00526.

Generating Multilingual Grammars from OWL Ontologies 13

References

(1]
(2
(3]

(4

(6]

7l

(8

B

Zaanen, M.V.: Abl: Alignment-based learning. In: Proceedings of the 18th Inter-
national Conference on Computational Linguistics (COLING), Saarbriicken (2000)
Williem Adriaans, P.: Language Learning from a Categorial Perspective. PhD
thesis, Amsterdam University (1992)

Ranta, A.: Grammatical framework. a type-theoretical grammar formalism. The
Journal of Functional Programming 14 (2004) 145-189

Milward, D., Beverige, M.: Ontology-based dialogue systems. In: IJCAI Workshop
on Knowledge and Reasoning in Practical Dialogue Systems. (2003)

Quesada, J.F., Amores, G.: Knowledge-based reference resolution for dialogue
management in a home domain environment. In Johan Bos, M.E., Matheson, C.,
eds.: Proceedings of the sixth workshop on the semantics and pragmatics of dialogue
(Edilog). (2002) 149-154

Russ, T., Valente, A., MacGregor, R., Swartout, W.: Practical experiences in
trading off ontology usability and reusability. In: Proceedings of the Knowledge
Acquisition Workshop (KAWY9), Banff, Alberta (1999)

Estival, D., Nowak, C., Zschorn, A.: Towards ontology-based natural language
processing. In: RDF/RDFS and OWL in Language Technology: 4th Workshop on
NLP and XML, Barcelona, Spain, ACL (2004)

Amores, G., Quesada, F.: Episteme. Procesamiento del Lenguaje Natural 21 (1997)
1-16

Sharon Oviatt, S.L., DeAngeli, A., K., K.: Integration and synchronization of
input modes during multimodal human-computer interaction. In: Proceedings of
Conference on Human Factors in Computing Systems: CHI '97. (1997)

